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Abstract. We discuss the Lippmann-Schwinger equation which governs the short-range reaction matrix (K-
matrix) in the two-step multichannel quantum defect theory (MQDT) of dissociative recombination and
related processes. We show that, if the energy dependence of the electronic coupling between the dissociative
state and the ionization continua can be neglected, the convergence of the Born expansion of the Lippmann-
Schwinger equation is achieved at second order. For the case of energy-dependent interaction, higher order
effects are tested using a non-perturbative method for solving the Lippmann-Schwinger equation. Numerical
examples are given for the dissociative recombination and vibrational de-excitation of the H+

2 molecular ion.

PACS. 34.80.Gs Molecular excitation and ionization by electron impact – 34.80.Ht Dissociation and
dissociative attachment by electron impact – 34.80.Lx Electron-ion recombination and electron attachment

1 Introduction

Collisions between slow electrons and molecular ions in-
duce various processes (ro-vibrational excitation and de-
excitation, dissociative recombination) which may influ-
ence the ro-vibrational temperature and the ionization
degree of cold molecular plasmas, as those occurring in
the interstellar medium, or at the wall of the fusion de-
vices. The experimental determination of the rate coef-
ficients for these processes, and for specific ion initial
states, is difficult, especially for the case of homonu-
clear diatomic ions. Indeed, the absence of permanent
dipole prevents homonuclear diatomic from relaxing radia-
tively, even when stored for several seconds in ion storage
rings [1]. It is therefore important that theoretical evalua-
tion of these rate coefficients may support or complement
their experimental determination, both to assess their ab-
solute values for a given ion initial state, and to analyze
the reaction mechanism which may radically affect the or-
der of magnitude of the cross-sections and rates.

The theoretical study of such processes involves two
equally important aspects, which may be treated in a sin-
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gle step or in sequence, depending on the approach. One
first needs a good knowledge of the electronic structure
of the system, both of the ion AB+ and of the neutral
molecule AB formed by electron recombination: poten-
tial energy curves, electronic or non-adiabatic interactions,
Rydberg states and their quantum defects. The second as-
pect is the treatment of the dynamics, which involves both
electronic and nuclear dynamics, and their mutual inter-
actions. Indeed, especially when dissociation occurs as in
dissociative recombination, we have to deal with a “re-
active” collision event with electron scattering in the en-
trance channel, and heavy particles as products. Besides
global approaches such as the R-matrix, mostly used for
calculating vibrational [2] and rotational [3] transitions, a
2-step method [4], adapted from the multichannel quan-
tum defect theory [5] (MQDT), has been widely used and
improved along the past 20 years. This approach rests on a
quasi-diabatic description of molecular states [6], in which
only part of the electronic Hamiltonian is diagonalized,
within subspaces of electronic states of similar nature:
Rydberg states with ground state ion core (i.e. mono-
excited states), Rydberg states with excited ion core and
various kinds of valence states (i.e. di-excited or more).
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These molecular states serve as a basis for defining a first
set of scattering channels (electron-ion or atom-atom),
which are then coupled by the remaining electronic cou-
plings, not included in the basis molecular states. These
couplings should not be too strong (or else, an adiabatic
representation is certainly more appropriate), but play the
main role in the dynamics of the reactive process, by mix-
ing the various types of channels which leads to various
types of fragmentation.

Starting from the electronic couplings left out in the
basis set definition, encompassed in an operator V, a
short-range reaction matrix K is built, by solving the
Lippmann-Schwinger integro-differential equation [7]

K = V + V
1

E− H0
K (1)

where H0 is the Hamiltonian operator excluding the elec-
tronic interaction V.

The method for solving the Lippmann-Schwinger equa-
tion depends both on the strength of the interaction V,
and on its variations with the electron energy. In the case
of a weak Rydberg-valence interaction, a perturbative so-
lution, based on a Born expansion in terms of the interac-
tion matrix elements, can be used. In the original applica-
tion of MQDT to DR and related processes [4], only the
first term of the series was retained, i.e. K = V. Later,
Gubermann and Giusti-Suzor [8] extended the range of
validity of the method by including the second order of
perturbation.

Takagi [9] was the first to investigate the possibility of
solving the Lippmann-Schwinger equation beyond pertur-
bation theory. Using an iterative grid method, he obtained
a fixed-mesh numerical solution which, in case of strongly
energy-dependent channel interactions, was quite different
from the approximate one. Some years later, Pichl and his
co-workers [11] re-visited the subject and treated the sin-
gular kernel analytically.

The purpose of this paper is mainly to assess the range
of validity of the so-called perturbative treatment of the
K-matrix, at first and second order, and to evaluate when
and how much higher-order effects may change the mag-
nitude or the shape of the cross-sections. In the following
we show that:

(i) if the energy-dependence of the electronic interaction
V(R) between the dissociative states and the ioniza-
tion continua can be neglected, convergence of the
Born expansion of the Lippmann-Schwinger equation
is actually achieved at second order, which means that
the second order perturbation formula

K = V + V
1

E− H0
V (2)

is, in fact, exact. This approximation is often valid
since the electronic coupling is mainly built at short
distance where the external electron is strongly accel-
erated by the Coulomb attraction and thus insensitive
to small differences in kinetic energy;

(ii) if the energy-dependence of the electronic coupling
cannot be neglected, but can be factorized with re-
spect to its R-dependence, i.e.

Vε(R) = p(ε)V(R) (3)

Pichl et al. have shown that a tractable solution of the
Lippmann-Schwinger may be obtained by solving a
system of algebraic equations [11]. Using this efficient
numerical method we present some model calculations
showing the effects of higher orders of the K-matrix
induced via the energy-dependence of the electronic
interaction.

2 The short-range reaction matrix

The elements of the short-range reaction matrix K are
subject to the Lippmann-Schwinger equation (1) which
gives rise to a system of coupled integro-differential equa-
tions in coordinate representation. In the energy represen-
tation, this system of equations may be written:

Kji(E′, E) = Vji(E′, E)

+
∑

k

P

∫
dE′′Vjk(E′, E′′)Kki(E′′, E)

E − E′′ · (4)

Here, we note by Vji(E′, E) the matrix elements obtained
from the coupling operator linking two electronic states,
Vε(R) in coordinate representation, by integration over
the nuclear coordinate R. Actually, our choice of quasi-
diabatic representation for the molecular states implies
that the interaction operator V has no matrix elements
between two ionization channels, nor between two disso-
ciation channels:

Vv1v2(E
′
1, E

′
2) = 0 (5)

Vd1d2(E1, E2) = 0. (6)

As for the interaction between an ionization channel and
a dissociative one, it is built on the coupling between the
corresponding electronic states, Vε(R), which may depend
on the energy ε of the outer electron in the ionization
channel:

Vvd(E′, E) = Vdv(E, E′) =
∫

χv(R)Vε(R)Fdε(R)dR

ε = E′ − Ev ε = E − Ed (7)

where Fdε is the energy-normalized regular eigenfunction
in the dissociative channel, Ed the asymptotic energy of
the electronic dissociative state, ε the kinetic energy re-
lease of the atomic products, and χv the ion vibrational
wave-function with energy Ev.
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2.1 Case of energy-independent interchannel coupling

We first evaluate the reaction matrix element correspond-
ing to the interaction between two dissociative chan-
nels, Kd1d2(E1, E2),

Kd1d2(E1, E2) = Vd1d2(E1, E2)

+
∑

d

P

∫
dE

Vd1d(E1, E)Kdd2(E, E2)
E2 − E

+
∑

v

P

∫
Vd1v(E1, E

′)Kvd2(E′, E2)
E2 − E′ dE′.

(8)

The first two terms in the right hand side are zero in our
quasi-diabatic approach (Eq. (6)). We now assume that
the electronic couplings are independent on the energy
of the external electron (Rydberg or in the continuum),
which implies, according to equation (7), that the inter-
action matrix elements, after integration over the nuclear
coordinate, depend exclusively on the kinetic energy re-
lease of the dissociating molecule:

Vd1v(E1, E
′) ≡ Vd1v(E1) (9)

Vvd1(E
′, E1) ≡ Vvd1(E1). (10)

The expression (8) for the valence-valence K-matrix ele-
ment thus reduces to:

Kd1d2(E1, E2) =
∑

v

Vd1v(E1)P
∫

Kvd2(E′, E2)
E2 − E′ dE′

(11)
which is decoupled with respect to the two energy vari-
ables E1 and E2. To go one step further, we need to
express the Rydberg-valence reaction matrix elements
Kvd2(E′, E2). Following equation (4), we obtain:

Kvd2 (E′, E2) = Vvd2(E
′, E2)

+
∑
d3

P

∫
Vvd3(E′, E3)Kd3d2(E3, E2)

E2 − E3
dE3

+
∑

v

P

∫
dE′

1

Vvv1
(E′, E′

1)Kv1d2(E′
1, E2)

E2 − E′
1

(12)

which, owing to equations (10, 5), reduces to:

Kvd2(E2)=Vvd2(E2)+
∑
d3

P

∫
Vvd3(E3)Kd3d2(E3, E2)

E2 − E3
dE3.

(13)
These K-matrix elements do not depend on E′. The ex-
pression (11) thus becomes

Kd1d2(E1, E2) =
∑

v

Vd1v(E1)Kvd2(E2)I(E2) = 0 (14)

since the principal part integral I(E2)

I(E2) = P

∫ ∞

−∞

dE′

E2 − E′ = 0 (15)

is obviously zero. The formula (14) was used in refer-
ence [8] on-the-energy-shell (E1 = E2), but we show here
that (i) this equation is exact and (ii) it also applies off -
the-energy-shell.

Coming back to Kvd2(E′, E2), equation (13) now re-
duces to:

Kvd2(E
′, E2) = Vvd2(E

′, E2) = Vvd2(E2) (16)

since Kd3d2(E3, E2) = 0 from equation (14). This is the
second order formula for the Kvd2(E′, E2) matrix ele-
ment (12), which is in fact exact and depends on E2 (the
right-hand-side argument) only.

For the Rydberg-Rydberg matrix elements
Kv1v2(E′

1, E
′
2), we have, according to equation (4):

Kv1v2 (E′
1, E

′
2) = Vv1v2(E

′
1, E

′
2)

+
∑

v

P

∫
dE′Vv1v(E′

1, E
′)Kvv2(E′, E′

2)
E′

2 − E′

+
∑

d

P

∫
dE

Vv1d(E′
1, E)Kdv2(E, E′

2)
E′

2 − E

(17)

which, following equations (5, 10), reads:

Kv1v2(E
′
1, E

′
2) =

∑
d

P

∫
dE

Vv1d(E)Kdv2(E, E′
2)

E′
2 − E

· (18)

We already see that Kv1v2(E
′
1, E

′
2) is independent of E′

1,
the left-hand-side energy argument. To go further, we
need to express explicitly the matrix elements Kdv2(E, E′

2)
which may not be directly written as in equation (16),
since E and E′

2 do not appear symmetrically in equa-
tion (4). We start from

Kdv2(E, E′
2) = Vdv2 (E, E′

2)

+
∑

v

Vdv(E)P
∫

Kvv2(E
′, E′

2)
E − E′ dE′, (19)

and, since Kvv2(E′, E′
2) is independent of the left-hand-

side argument E′, the integral term vanishes as in equa-
tion (15), and we get:

Kdv2(E, E′
2) = Vdv2(E, E′

2) = Vdv2(E) (20)

which is similar to equation (16). Finally, using equa-
tions (20, 18), we obtain:

Kv1v2(E
′
1, E

′
2) =

∑
d

P

∫
dE

Vv1d(E)Vdv2 (E)
E′

2 − E

= Kv1v2(E
′
2), (21)

which is the previously used second order Kv1v2(E′
1, E

′
2)

matrix element [8], being in fact exact and dependent
on E′

2 only. This completes the proof that for energy-
independent coupling, the second order perturbative solu-
tion coincides with the exact one, both on-shell and off -
shell.
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Coming to computational aspects, the Kv1v2 terms
in (21), written more explicitly as:

Kv1v2(E) = P

∫
dε

〈
χv1 |V(R)|Fd(ε)

〉〈
Fd(ε)|V(R)|χv2

〉
E − (Ed + ε)

(22)
may be evaluated directly by calculating the principal part
(or Cauchy) integral in this energy representation, e.g.
with a Chebyshev integration method. Alternatively we
may use, as in reference [8], the on-shell (E = Ed + ε)
expression in the R representation:

Kv1v2(E) =
1
w

∫ ∫
χv1(R)V(R)Fdε(R<)

× Gdε(R>)V(R′)χv2(R
′)dRdR′ (23)

where Gdε is the irregular solution of the dissociative state
nuclear Schrödinger equation, lagging in phase by π/2
with respect to the regular solution Fdε, and w is the
Wronskian of the two functions Fdε and Gdε.

We have checked numerically the excellent agreement
between these two methods, provided the integral in (21)
is carried out on the whole energy spectrum (bound
and continuum) of the dissociative wave functions Fdε

involved.

2.2 Case of energy-dependent interchannel coupling

In general, the electronic coupling also depends on the
electron energy ε to a certain extent, and therefore, ac-
cording to (7), the integral matrix element Vdv(E, E′)
depends on the two energy variables, E′ and E. How-
ever, if the coupling Vε(R) can be factorized as in equa-
tion (3), the matrix element Vdv(E, E′) decouples in E
and E′. Pichl et al. [11] recently discussed this case in de-
tail, under the name of quasi-separable coupling. Let us
briefly summarize their results since we compare below
the K-matrix solutions for constant and general electron
energy profiles. Due to equation (3), the energy kernel (7)
in Lippmann Schwinger equation (4) (E′ = Ev + ε and
E = Ed + ε) separates in the form

Vdv(E, E′) = p(E′ − Ev)Vdv(E), (24)

where Vdv(E) is given by equation (7), and the on-shell
K-matrix solution, from which the cross-sections will be
obtained, are given explicitly as

Kdd(E) =
∑

v

πvβvVdv(E), Kvd(E) = βvp(E − Ev)

(25)
and

Kv1v2(E) = γv1v2p(E − Ev1),

Kdv(E) =
∑
v′

[p (E − Ev) δvv′ + πv′γv′v] Vdv′(E), (26)

where Kij(E) stands for Kij(E, E) for simplicity. The re-
duced matrix elements β and γ in the above equations are

solutions of the linear systems
∑
v′

[δvv′ − πvv′πv′ ]βv′ = Vdv(E),

∑
v′

[δv1v′ − πv1v′πv′ ]γv′v2 = p(E − Ev2)πv1v2 , (27)

and πv, πvv′ are principal value integrals respectively
given by

πv(E) ≡ P

∫ ∞

−∞

p2(E′ − Ev)
E − E′ dE′

and

πvv′ (E) ≡ P

∫ ∞

Ed

Vdv(E′)Vdv′(E′)
E − E′ dE′. (28)

This K-matrix solution is more general than the previous
one, restricted to energy-independent interchannel cou-
plings. For the still more general case of non-separable
interaction, an exact K-matrix can also be obtained by
solving a larger system of coupled equations resulting from
an expansion of the interaction- and reaction-matrix ele-
ments in Chebyshev polynomials [11].

3 Calculations

We have used the tools presented in Section 2 to com-
pute cross-sections for dissociative recombination (DR)
and super-elastic collisions (transitions v → v′, v′ < v)
(SEC) of H+

2 ions with slow electrons, using a non-
perturbative resolution of the Lippmann-Schwinger equa-
tion. By comparing the results obtained at second order
of the K-matrix for energy-independent electronic cou-
pling, with the results of the resolution of linear coupled
equations for an energy-dependent coupling, we can check
the off-shell effects, since the perturbation series of the
K-matrix was found to converge at second order in the
case of energy-independent electronic interaction. In ad-
dition, in the case of constant coupling we will compare the
results obtained at first and second order of the K-matrix.

These test calculations are performed for the 2 lowest
vibrational states (v = 0, 1) of H+

2 , and only the lowest
(2pσu)2 1Σ+

g dissociative state of H2 was considered. The
short-range K-matrix is built from the electronic coupling
between this doubly excited state and the mono-excited
manifold with 1Σ+

g symmetry (either electron-ion contin-
uum or Rydberg states, which are treated in an unified
way in the MQDT approach). For the tests with an energy-
dependent electronic coupling, we have used a coupling
function for which the energy- and R-dependence may be
factorized as in equation (3). The R-dependent part V(R)
of the coupling is the same function as in our previous cal-
culations [12,13] while the energy profile p(ε) is extracted
from calculations performed by Hara and Sato [10] in the
static exchange approximation, with a linear extrapola-
tion below the threshold. To be more specific, their cal-
culations, performed only for the dσ partial wave of the
continuum electron, lead to a coupling function — plotted
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Fig. 1. Coupling strength of the dσ partial wave of the continuum electron with the 1Σ+
g (2pσu)2 dissociative state for H2. The

couplings Vε(R) is represented in (a) as a function of collision energy for some internuclear distances and in (b) as a function
of internuclear distance for some values of the collision energy (adapted from Ref. [10]).

in Figure 1 — which has been shown by Pichl et al. [11]
to be nearly separable. The energy factor p(ε) in equa-
tion (3) has been adjusted such that the resulting cou-
pling Vε(R) coincides for ε = 0 with our R-dependent
constant coupling i.e. p(0) = 1. Our calculations also in-
volve the sσ electron partial wave for which the electronic
coupling [12,13] is assumed here to have the same energy-
dependence as for the dσ partial wave.

Figure 2 shows the DR (for v = 0 initial ion level, left-
hand side) and the SEC (v = 1 → v = 0, rigth-hand
side) cross-sections obtained in three calculations where
the Lippmann-Schwinger equation is solved with different
methods i.e. first order perturbative method (a), second
order (b) and non-perturbative method (c). The couplings
used in calculations (a) and (b) are energy-independent
while those of calculation (c) depend on the electron en-
ergy. For each case, we show the cross-sections obtained
for the so-called direct process, in which only the direct
transition from the electron continuum to the dissociative
state is considered, and for the total one (direct + indi-
rect) in which temporary capture into Rydberg states is
included. The magnitudes of the direct cross-sections are
very close in the three calculations, proving that the dif-
ferences found in the total cross-sections can be attributed
to the change in both positions and shapes of the Rydberg
resonances due to the indirect process. The resonance pat-

tern of cross-sections (a) is very different from that of cal-
culations (b) and (c). In the first order cross-sections (a)
the resonances are pure windows while in (b) and (c) they
are either windows or peaks, which proves that part of
the indirect mechanism is not taken into account in the
first order calculations. This is clearly displayed in SEC
cross-sections (right-hand side of Fig. 2). This process has
been shown [13] to be dominated by electronic interactions
which indirectly couple the vibrational levels of Rydberg
states via the doubly excited state, and the K-matrix el-
ements linked to these interactions are neglected in first
order calculations.

In order to evaluate the averaged effect of the higher
order K-matrix, we have convoluted the cross-sections of
Figure 2 over an anisotropic Maxwellian distribution of
electron velocity, with two temperatures (kTe⊥ = 12 meV
and kTe‖ = 0.1 meV) typical of recent storage ring ex-
periments [1]. The convoluted cross-sections are shown in
Figure 3. Except for very low energy (ε < 10−2 eV), the
differences between the energy-independent calculations
(dashed lines) and the energy-dependent ones (full lines)
are generally small. The larger differences near threshold
(about a factor of 2) are due to the low-lying resonances
and are restricted to a small energy range (note the loga-
rithmic energy scale of the figures).
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4 Conclusion

In this paper, we have investigated the dominant contri-
butions for the calculation of the short range K-matrix
which is part of the two-step MQDT treatment of DR
and related processes. We obtained two sets of results.

(i) For an energy-independent interchannel coupling,
the perturbation expansion of the K-matrix associated
with this coupling converges at second order, whatever the
size of the coupling matrix elements. On the other hand,
the second order K-matrix clearly encompasses physical
mechanisms which are not accounted for at first order. It
is especially true for collision-induced vibrational transi-
tions when they are mostly driven by indirect electronic
couplings. Second order calculations are therefore recom-
mended, and are reliable provided there is no indication
for a violent energy-dependence of the short-range interac-
tions. Most of the recent MQDT studies of dissociative re-
combination (for He+

2 [14], CH+ [15], NO+ [16], H+
2 [13]),

HeH+ [17]...) have been performed with a second-order
K-matrix calculation.

(ii) Higher order effects may be induced by off-shell
terms in the K-matrix when the short-range coupling de-
pends on the electron energy ε. In this case, rather than
evaluating higher orders of the K-matrix perturbation se-
ries, it is more suitable to perform the exact calculation by
solving a system of coupled algebraic equations. The effect
on cross-section values for the direct processes, involving
open channels only, is very small. It is more substantial, es-
pecially at very low energy, for the resonance pattern due
to closed channels, i.e. to temporary capture into bound
Rydberg states. Nevertheless, the convolution over exper-
imental velocity distribution results in very close cross-
sections for constant and energy-dependent short range
couplings.

These tests have been performed for a case where the
initial set of ionization and dissociation channels are cou-
pled by an electronic coupling and for electron colliding
with a single electron target. The formalism also applies
to more complex cases (many electron target, closely ly-
ing dissociative resonances) as much as a coupling ma-
trix V can be defined with the set of ionization channels.
The dimension of the coupling matrix may be larger and
the calculation of the K-matrix heavier, but the steps of
the calculations will be identical. On the other hand the
two-step method has also been used when non-adiabatic
interchannel couplings drive the DR process, in systems
without crossing between a doubly excited states and the
ionic ground state [17,18]. Although these couplings might
depend more strongly on the electron energy than the elec-
tronic couplings which are built at very short range, in the
inner core of the electronic cloud, there are generally much

weaker so that the second-order perturbative treatment is
still usually justified.
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